Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Bounded Eigenvalues of Fully Clamped and Completely Free Rectangular Plates

      Mochida, Yusuke
      Thumbnail
      Files
      thesis.pdf
      969.9Kb
      Citation
      Export citation
      Mochida, Y. (2007). Bounded Eigenvalues of Fully Clamped and Completely Free Rectangular Plates (Thesis, Master of Engineering (ME)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/2508
      Permanent Research Commons link: https://hdl.handle.net/10289/2508
      Abstract
      Exact solution to the vibration of rectangular plates is available only for plates with two opposite edges subject to simply supported conditions. Otherwise, they are analysed by using approximate methods. There are several approximate methods to conduct a vibration analysis, such as the Rayleigh-Ritz method, the Finite Element Method, the Finite Difference Method, and the Superposition Method. The Rayleigh-Ritz method and the finite element method give upper bound results for the natural frequencies of plates. However, there is a disadvantage in using this method in that the error due to discretisation cannot be calculated easily. Therefore, it would be good to find a suitable method that gives lower bound results for the natural frequencies to complement the results from the Rayleigh-Ritz method. The superposition method is also a convenient and efficient method but it gives lower bound solution only in some cases. Whether it gives upper bound or lower bound results for the natural frequencies depends on the boundary conditions. It is also known that the finite difference method always gives lower bound results. This thesis presents bounded eigenvalues, which are dimensionless form of natural frequencies, calculated using the superposition method and the finite difference method. All computations were done using the MATLAB software package. The convergence tests show that the superposition method gives a lower bound for the eigenvalues of fully clamped plates, and an upper bound for the completely free plates. It is also shown that the finite difference method gives a lower bound for the eigenvalues of completely free plates. Finally, the upper bounds and lower bounds for the eigenvalues of fully clamped and completely free plates are given.
      Date
      2007
      Type
      Thesis
      Degree Name
      Master of Engineering (ME)
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2381]
      Show full item record  

      Usage

      Downloads, last 12 months
      40
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement