Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Vocal Detection: An evaluation between general versus focused models

      Tsai, Yi-Na
      Thumbnail
      Files
      thesis.pdf
      2.395Mb
      Citation
      Export citation
      Tsai, Y.-N. (2011). Vocal Detection: An evaluation between general versus focused models (Thesis, Master of Science (MSc)). University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/5700
      Permanent Research Commons link: https://hdl.handle.net/10289/5700
      Abstract
      This thesis focuses on presenting a technique on improving current vocal detection methods. One of the most popular methods employs some type of statistical approach where vocal signals can be distinguished automatically by first training a model on both vocal and non-vocal example data, then using this model to classify audio signals into vocals or non-vocals. There is one problem with this method which is that the model that has been trained is typically very general and does its best at classifying various different types of data. Since the audio signals containing vocals that we care about are songs, we propose to improve vocal detection accuracies by creating focused models targeted at predicting vocal segments according to song artist and artist gender. Such useful information like artist name are often overlooked, this restricts opportunities in processing songs more specific to its type and hinders its potential success. Experiment results with several models built according to artist and artist gender reveal improvements of up to 17% when compared to using the general approach. With such improvements, applications such as automatic lyric synchronization to vocal segments in real-time may become more achievable with greater accuracy.
      Date
      2011
      Type
      Thesis
      Degree Name
      Master of Science (MSc)
      Supervisors
      Jones, Steve
      Publisher
      University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [1985]
      Show full item record  

      Usage

      Downloads, last 12 months
      33
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement