Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Self-Mixing Diode Laser Interferometry

      Shrestha, Pawan Kumar
      Thumbnail
      Files
      thesis.pdf
      2.492Mb
      Citation
      Export citation
      Shrestha, P. K. (2010). Self-Mixing Diode Laser Interferometry (Thesis, Master of Engineering (ME)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/5910
      Permanent Research Commons link: https://hdl.handle.net/10289/5910
      Abstract
      Self-mixing interferometry in a laser diode is a very powerful tool in measurement science. The Self-mixing interferometer is a very robust and low cost interferometer with extreme simplicity in alignment and setup. In this thesis, a self-mixing interferometer is analysed and developed. The measurements of the self-mixing interferometer are verified using a Michelson interferometer. It is then followed by the signal processing of the detected signal. Three different methods are developed to retrieve the movement of the target. Results obtained by applying these methods to different experimental data sets are presented.

      In the later part of the thesis, a phase locked self-mixing interferometer is developed. This slightly modified interferometer follows the target movement. As a result no additional circuitry or signal processing is necessary for the recovery of the target movement. Phase locked interferometer developed in this thesis was able to measure down to 1 nm of vibration. It is then followed by a novel method to detect cracks in eggshells using the phase locked vibrometer. The proposed method is tested and proved to be capable of differentiating between the intact and cracked eggs.
      Date
      2010
      Type
      Thesis
      Degree Name
      Master of Engineering (ME)
      Supervisors
      Künnemeyer, Rainer
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2385]
      Show full item record  

      Usage

      Downloads, last 12 months
      95
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement