Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Computing the fast Fourier transform on SIMD microprocessors

      Blake, Anthony Martin
      Thumbnail
      Files
      thesis.pdf
      940.9Kb
      Citation
      Export citation
      Blake, A. M. (2012). Computing the fast Fourier transform on SIMD microprocessors (Thesis, Doctor of Philosophy (PhD)). University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/6417
      Permanent Research Commons link: https://hdl.handle.net/10289/6417
      Abstract
      This thesis describes how to compute the fast Fourier transform (FFT) of a power-of-two length signal on single-instruction, multiple-data (SIMD) microprocessors faster than or very close to the speed of state of the art libraries such as FFTW (“Fastest Fourier Transform in the West”), SPIRAL and Intel Integrated Performance Primitives (IPP).

      The conjugate-pair algorithm has advantages in terms of memory bandwidth, and three implementations of this algorithm, which incorporate latency and spatial locality optimizations, are automatically vectorized at the algorithm level of abstraction. Performance results on 2- way, 4-way and 8-way SIMD machines show that the performance scales much better than FFTW or SPIRAL.

      The implementations presented in this thesis are compiled into a high-performance FFT library called SFFT (“Streaming Fast Fourier Trans- form”), and benchmarked against FFTW, SPIRAL, Intel IPP and Apple Accelerate on sixteen x86 machines and two ARM NEON machines, and shown to be, in many cases, faster than these state of the art libraries, but without having to perform extensive machine specific calibration, thus demonstrating that there are good heuristics for predicting the performance of the FFT on SIMD microprocessors (i.e., the need for empirical optimization may be overstated).
      Date
      2012
      Type
      Thesis
      Degree Name
      Doctor of Philosophy (PhD)
      Supervisors
      Witten, Ian H.
      Cree, Michael J.
      Perrone, John A.
      Publisher
      University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Higher Degree Theses [1714]
      Show full item record  

      Usage

      Downloads, last 12 months
      280
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement