Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Heterogeneous Computing for Data Stream Mining

      Petko, Vladimir
      Thumbnail
      Files
      thesis.pdf
      1.289Mb
      Citation
      Export citation
      Petko, V. (2016). Heterogeneous Computing for Data Stream Mining (Thesis, Master of Science (Research) (MSc(Research))). University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/10524
      Permanent Research Commons link: https://hdl.handle.net/10289/10524
      Abstract
      Graphical Processing Units are de-facto standard for acceleration of data parallel tasks in high performance computing. They are widely used to accelerate batch machine learning algorithms. High-end discrete GPUs are characterized by a very high number of cores (thousands), high bandwidth memory optimized for the stream access and high power requirements. Integrated GPUs are characterized by a medium number of cores (hundreds), medium bandwidth memory shared with CPU optimized for the random access and low power requirements. Data stream processing applications are often required to provide response within the limited time frame, operate on data in relatively small increments and have strict power requirements if deployed on the embedded devices. This work evaluates performance of integrated and discrete GPUs belonging to the same chip family on several variants of k-nearest neighbours algorithm over sliding window and stochastic gradient descent using OpenCL and novel Heterogeneous System Architecture platforms. We conclude that integrated GPUs provide a niche solution catering for to small work sizes that offers better power efficiency and simplicity of deployment.
      Date
      2016
      Type
      Thesis
      Degree Name
      Master of Science (Research) (MSc(Research))
      Supervisors
      Pfahringer, Bernhard
      Publisher
      University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2387]
      Show full item record  

      Usage

      Downloads, last 12 months
      85
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement