Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mapping vegetation with remote sensing and GIS data using object-based analysis and machine learning algorithms

      Pham, Thi Hong Lien
      Thumbnail
      Files
      thesis.pdf
      3.253Mb
      Citation
      Export citation
      Pham, T. H. L. (2018). Mapping vegetation with remote sensing and GIS data using object-based analysis and machine learning algorithms (Thesis, Doctor of Philosophy (PhD)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/11758
      Permanent Research Commons link: https://hdl.handle.net/10289/11758
      Abstract
      Remote sensing technology is an efficient tool for various practical applications of environmental resources management. Advances in this technology include the diverse range of high quality data sources and image analysis techniques. Object-based image analysis (OBIA) and machine learning algorithms are recent advances, which this thesis evaluates.

      OBIA and machine learning algorithms are first tested using a combination of multiple datasets for identifying individual tree species. These datasets include Quickbird, LiDAR, and GIS derived terrain data. Improvements in tree species classification were obtained and the best data combination was terrain context (based on slope, elevation, and wetness), tree height, canopy shape, and branch density (based on LiDAR return intensity).

      The availability of a range of classifiers and different data pre-processing techniques adds to the complexity of image analysis. The combinations of these techniques result in a large number of potential outcomes and these need to be evaluated. Therefore, the second part of this research investigated and compared tree species classification performance for different methods (Naïve Bayes - NB , Logistic Regression - LR, Random Forest - RF, and Support Vector Machine - SVM), combined with various dimensionality reduction (DR) methods (Correlation-based feature selection filter, Information Gain, Wrapper methods, and Principal Component Analysis). When DR was used prior to classification, only the NB classifier had a significant improvement in accuracy. SVM and RF had the best classification accuracy, and this was achieved without DR.

      The final part of this thesis demonstrates a new method using OBIA for mapping the biomass change of mangrove forests in Vietnam between 2000 and 2011 from SPOT images. First, three different mangrove associations were identified using two levels of image segmentation followed by a SVM classifier and a range of spectral, texture and GIS information for classification. The RF regression model that integrated spectral, vegetation association type, texture, and vegetation indices obtained the highest accuracy.
      Date
      2018
      Type
      Thesis
      Degree Name
      Doctor of Philosophy (PhD)
      Supervisors
      Brabyn, Lars
      d'Hauteserre, Anne-Marie
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Higher Degree Theses [1721]
      Show full item record  

      Usage

      Downloads, last 12 months
      233
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement