Show simple item record  

dc.contributor.advisorScott, Jonathan B.
dc.contributor.advisorWilson, Marcus T.
dc.contributor.authorMcCabe, Steven Owen
dc.date.accessioned2019-05-02T22:23:47Z
dc.date.available2019-05-02T22:23:47Z
dc.date.issued2019
dc.identifier.citationMcCabe, S. O. (2019). Implantable electrode structures and their RF effects in MRI machines (Thesis, Doctor of Philosophy (PhD)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/12508en
dc.identifier.urihttps://hdl.handle.net/10289/12508
dc.description.abstractMedical implants incorporating long insulated conductors can generate a serious heating hazard to a patient undergoing a Magnetic Resonance Imaging (MRI) scan. Under the high-power RF field from an MRI machine, the conductors can behave as antennas and concentrate energy into small regions of body tissue, leading to excessive joule heating. Neurostimulator implants that employ long electrode leads such as those for Deep Brain Stimulation (DBS) and Spinal Cord Stimulation (SCS), are highly susceptible to this RF hazard. Patients with these implants are generally contraindicated from MRI. This thesis examines the heating phenomenon and identifies a variety of methods to mitigate the hazard and gain implant leads MRI safety. Techniques such as thin insulation, surface roughening, and auxiliary decoy filars are explored, with the latter shown to be especially effective at providing safety. Designs are first modelled with electromagnetic simulation software then experimentally proven inside of a gelled saline phantom within a 3T MRI machine. A lab-based measurement method is also established to enable rapid low-cost testing of prototype lead designs.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherThe University of Waikato
dc.rightsAll items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
dc.subjectDeep Brain Stimulator (DBS)
dc.subjectSpinal Cord Stimulator (SCS)
dc.subjectneurostimulation
dc.subjectbiomedical electrodes
dc.subjectmedical implants
dc.subjectRF heating
dc.subjectMRI safe
dc.subjectMRI conditional
dc.subjectelectromagnetic modeling
dc.subjectsafety
dc.subjectdecoy filar
dc.subjectroughened filar
dc.subjectfiber optic thermometry
dc.subjectdistal heating
dc.titleImplantable electrode structures and their RF effects in MRI machines
dc.typeThesis
thesis.degree.grantorThe University of Waikato
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (PhD)
dc.date.updated2019-04-07T02:30:37Z
pubs.place-of-publicationHamilton, New Zealanden_NZ


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record